Le problème StackMST

Olivier Marty Sous la direction de Jose Correa, Universidad de Chile

École Normale Supérieure de Cachan

Lundi 7 septembre 2015

Universidad de Chile

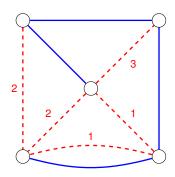
Universidad de Chile

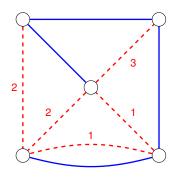
- 2 séminaires hebdomadaires
- 1 rencontre hebdomadaire
- 1 séminaire de mes travaux

Plan

- Problème StackMST
- 2 Réductions

Programme entier

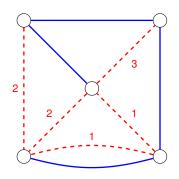




Définition (StackMST)

Leader : choisit les prix bleus;

Follower : choisit un MST;

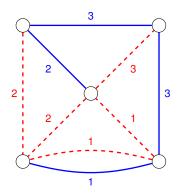


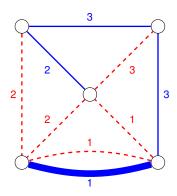
Définition (StackMST)

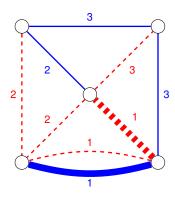
Leader : choisit les prix bleus;

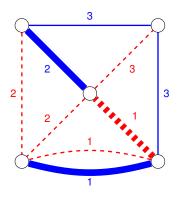
Follower : choisit un MST;

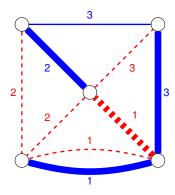
Quels prix appliquer?











Définition (Algorithme de Kruskal)

- Trier les arêtes;
- Les selectionner dans l'ordre, sans créer de cycle.

Définition (Algorithme de Kruskal)

- Trier les arêtes;
- 2 Les selectionner dans l'ordre, sans créer de cycle.
- ⇒ Dans un cycle l'arête la plus chère n'est jamais selectionnée.

Définition (Algorithme de Kruskal)

- Trier les arêtes;
- Les selectionner dans l'ordre, sans créer de cycle.
- ⇒ Dans un cycle l'arête la plus chère n'est jamais selectionnée.

Définition (Algorithme de Prim)

- Partir d'un arbre-sommet:
- Ajouter l'arête minimal de la coupe.

Définition (Algorithme de Kruskal)

- Trier les arêtes;
- 2 Les selectionner dans l'ordre, sans créer de cycle.
- ⇒ Dans un cycle l'arête la plus chère n'est jamais selectionnée.

Définition (Algorithme de Prim)

- Partir d'un arbre-sommet:
- 2 Ajouter l'arête minimal de la coupe.
- ⇒ Tout MST doit contenir l'une des arêtes les moins chères d'une coupe.

- On peut utiliser les même valeurs
 - \rightarrow sinon on peut faire mieux;

- On peut utiliser les même valeurs
 → sinon on peut faire mieux;
- Les arêtes bleues sont preférées
 - \rightarrow sinon pareil avec des ε ;

- On peut utiliser les même valeurs
 → sinon on peut faire mieux;
- Les arêtes bleues sont preférées
 - \rightarrow sinon pareil avec des ε ;
- R doit contenir un arbre couvrant
 - → sinon revenu infini;

- On peut utiliser les même valeurs
 - \rightarrow sinon on peut faire mieux;
- Les arêtes bleues sont preférées
 - \rightarrow sinon pareil avec des ε ;
- R doit contenir un arbre couvrant
 - → sinon revenu infini;
- R peut être un arbre
 - → sinon arêtes rouges inutiles;

- On peut utiliser les même valeurs
 - \rightarrow sinon on peut faire mieux;
- Les arêtes bleues sont preférées
 - \rightarrow sinon pareil avec des ε ;
- R doit contenir un arbre couvrant
 - → sinon revenu infini;
- R peut être un arbre
 - → sinon arêtes rouges inutiles;
- R peut être un chemin
 - → par transformation en un problème équivalent;

- On peut utiliser les même valeurs
 - \rightarrow sinon on peut faire mieux;
- Les arêtes bleues sont preférées
 - \rightarrow sinon pareil avec des ε ;
- R doit contenir un arbre couvrant
 - → sinon revenu infini;
- R peut être un arbre
 - → sinon arêtes rouges inutiles;
- R peut être un chemin
 - → par transformation en un problème équivalent;
- B peut contenir un arbre couvrant
 - \rightarrow sinon arêtes rouges inutiles.

- On peut utiliser les même valeurs
 - \rightarrow sinon on peut faire mieux;
- Les arêtes bleues sont preférées
 - \rightarrow sinon pareil avec des ε ;
- R doit contenir un arbre couvrant
 - → sinon revenu infini;
- R peut être un arbre
 - → sinon arêtes rouges inutiles;
- R peut être un chemin
 - → par transformation en un problème équivalent;
- B peut contenir un arbre couvrant
 - \rightarrow sinon arêtes rouges inutiles.

Théorème

StackMST est NP-complet

même avec les prix {1,2};

Théorème

- même avec les prix {1,2};
- même avec un graphe planaire;

Théorème

- même avec les prix {1,2};
- même avec un graphe planaire;
- même en fixant les arêtes rouges;

Théorème

- même avec les prix {1,2};
- même avec un graphe planaire;
- même en fixant les arêtes rouges;
- même avec deux chemins et trois prix;

Théorème

- même avec les prix {1,2};
- même avec un graphe planaire;
- même en fixant les arêtes rouges;
- même avec deux chemins et trois prix;

Best-out-of-k

- Pour $1 \le j \le k$, affecter tous les prix à c_i et calculer le revenu;
- Renvoyer la meilleure valeur.

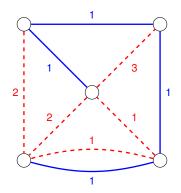
Best-out-of-k

- Pour $1 \le j \le k$, affecter tous les prix à c_i et calculer le revenu;
- Renvoyer la meilleure valeur.

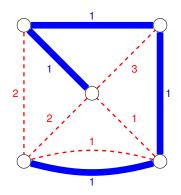
Théorème

Facteur d'approximation :

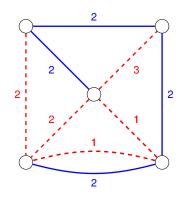
$$\min\left\{k,1+\ln\left(\frac{c_1}{c_k}\right),1+\ln(|B|)\right\}$$



Avec 1:

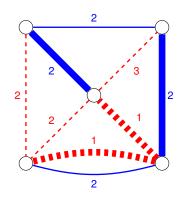


Avec 1: revenu = 4

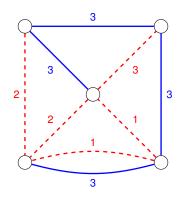


Avec 1: revenu = 4

Avec 2:

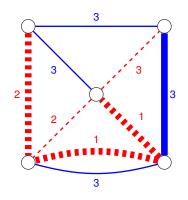


Avec 1 : revenu = 4Avec 2 : revenu = 4



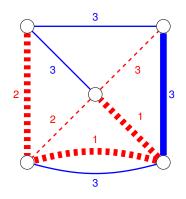
Avec 1 : revenu = 4Avec 2 : revenu = 4

Avec 3:



Avec 1 : revenu = 4 Avec 2 : revenu = 4 Avec 3 : revenu = 3

Best-out-of-k : exemple



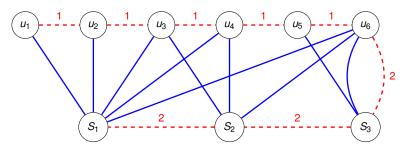
```
Avec 1 : revenu = 4
Avec 2 : revenu = 4
Avec 3 : revenu = 3
```

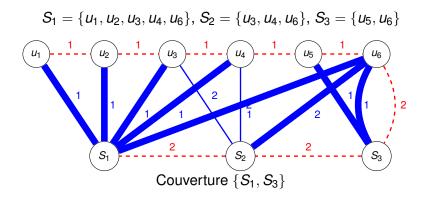
Plan

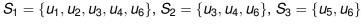
- Problème StackMST
- 2 Réductions

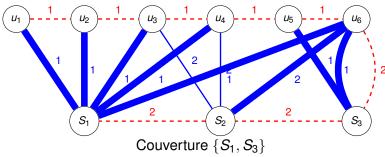
Programme entier

$$S_1 = \{u_1, u_2, u_3, u_4, u_6\}, S_2 = \{u_3, u_4, u_6\}, S_3 = \{u_5, u_6\}$$









Équivalence

Revenu n + 2m - t - 1 si et seulement si couverture de taille t.

Théorème

StackMST est NP-difficile même si on veut un ensemble d'arêtes rouges.

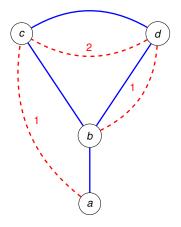
Théorème

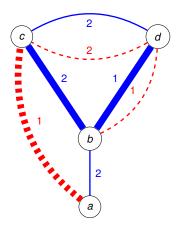
StackMST est NP-difficile même si on veut un ensemble d'arêtes rouges.

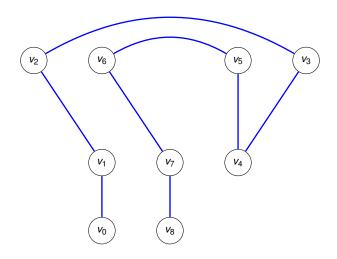
Proof.

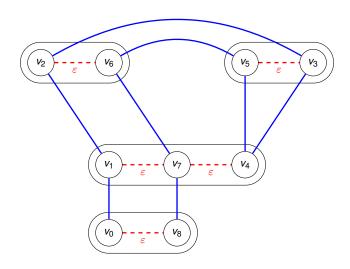
Même réduction :

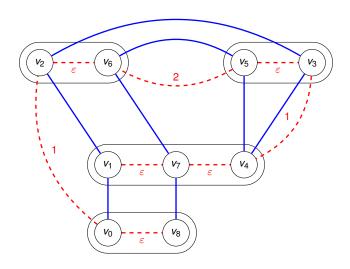
- ⇒ construction sans arêtes rouges;
- ← déjà vrai sans l'hypothèse supplémentaire.

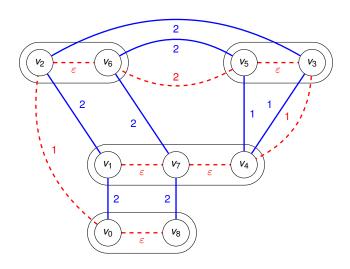


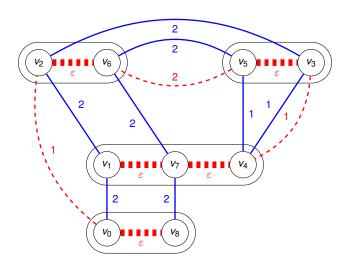


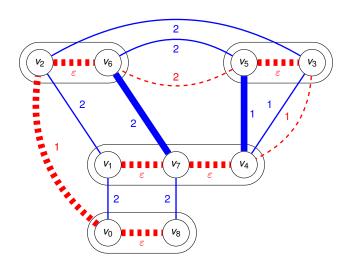


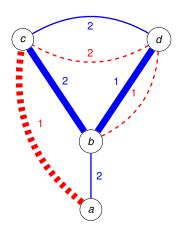












Réduction : deux chemins, réciproque

Proof.

Réciproquement:

• supprimer les ε bleus (perte de revenu < 1);

Réduction : deux chemins, réciproque

Proof.

Réciproquement :

- supprimer les ε bleus (perte de revenu < 1);
- garder le prix minimum de deux arêtes bleus parallèles;

Réduction : deux chemins, réciproque

Proof.

Réciproquement:

- supprimer les ε bleus (perte de revenu < 1);
- garder le prix minimum de deux arêtes bleus parallèles;
- après que les arêtes rouges ε sont sélectionnées les deux problèmes sont équivalents.

Plan

- Problème StackMST
- 2 Réductions

Programme entier

- x_e : 1 si l'arête e est dans le MST.
- B_1, \ldots, B_k : copies de B.

- x_e : 1 si l'arête e est dans le MST.
- B_1, \ldots, B_k : copies de B.

But:

$$\max \sum_{e \in B_1 \cup \dots \cup B_k} x_e p_e$$

Tel que:

• If y a |V| − 1 arêtes dans un arbre couvrant :

$$x(E) = |V| - 1$$

Tel que:

• If y a |V| - 1 arêtes dans un arbre couvrant :

$$x(E) = |V| - 1$$

 Dans une coupe, l'une des arêtes les moins chère est selectionnée (Prim) :

$$\forall S \subsetneq V, S \neq \emptyset,$$

$$x(\bar{\delta}(S)) \geq 1$$

Tel que:

• If y a |V| - 1 arêtes dans un arbre couvrant :

$$x(E) = |V| - 1$$

 Dans une coupe, l'une des arêtes les moins chère est selectionnée (Prim) :

$$\forall S \subseteq V, S \neq 0$$

$$x(\bar{\delta}(S)) \geq 1$$

• Les embouts des arêtes de coût $< c_j$ sont déjà connectés (Kruskal) :

$$\forall j \in \{1, \ldots, k\}, \forall S \subset V, S \neq \emptyset,$$

$$|R_{\leq j-1}(S)| + x(E_{\geq j}(S)) \leq |S| - 1$$

$$\max \sum_{e \in B_1 \cup \dots \cup B_k} x_e p_e$$

s.t.

$$x(E) = |V| - 1; \tag{1}$$

$$x(\bar{\delta}(S)) \ge 1$$
 $\forall S \subsetneq V, S \neq \emptyset;$ (2)

$$|R_{\leq j-1}(S)| + x(E_{\geq j}(S)) \leq |S| - 1 \quad \forall j \in \{1, \dots, k\}, \forall S \subset V, S \neq \emptyset;$$
(3)

 $x_e \in \{0,1\} \qquad \forall e \in E. \tag{4}$

Programme entier : séparation

But : résoudre le PL de taille exponentielle en temps polynomial.

Programme entier : séparation

But : résoudre le PL de taille exponentielle en temps polynomial.

• $\forall S \subsetneq V, S \neq \emptyset, x(\bar{\delta}(S)) \geq 1$: pour l'arête e = (a, b) rouge : trouver la coupe a - b minimal dans le graphe $(V, E_{\leq p_e})$.

Programme entier: séparation

$$\forall j \in \{1, \dots, k\}, \forall S \subset V, S \neq \emptyset, |R_{\leq j-1}(S)| + x(E_{\geq j}(S)) \leq |S| - 1:$$
 équivalent à
$$\forall j \in \{1, \dots, k\}, \forall S \subset V,$$

$$|R_{\leq j-1}(S)| + x(E_{>j}(S)) \leq \max\{|S| - 1, 0\}$$

Programme entier: séparation

$$\forall j \in \{1,\ldots,k\}, \forall S \subset V, S \neq \emptyset, |R_{\leq j-1}(S)| + x(E_{\geq j}(S)) \leq |S|-1:$$
 équivalent à
$$\forall j \in \{1,\ldots,k\}, \forall S \subset V,$$

$$|R_{\leq j-1}(S)| + x(E_{\geq j}(S)) \leq \max\{|S|-1,0\}$$

Pour *j* fixé, la fonction

$$S \mapsto |R_{\leq j-1}(S)| + x(E_{\geq j}(S)) - \max\{|S|-1,0\}$$

est supermodulaire.

Programme entier : encore à faire

Vraiment meilleur?

Integrality gap ?

• Algorithme ?

Conclusion

• Des résultats de compléxité bienvenus;

 Encore beaucoup à faire pour un algorithme d'approximation à facteur constant.

References I

In Amin Saberi, editor, *Internet and Network Economics*, volume 6484 of *Lecture Notes in Computer Science*, pages 75–86. Springer Berlin Heidelberg, 2010.

Jean Cardinal, ErikD. Demaine, Samuel Fiorini, Gwenaël Joret, Stefan Langerman, Ilan Newman, and Oren Weimann. The stackelberg minimum spanning tree game. *Algorithmica*, 59(2):129–144, 2011.

References II

Jean Cardinal, ErikD. Demaine, Samuel Fiorini, Gwenaël Joret, Ilan Newman, and Oren Weimann.

The stackelberg minimum spanning tree game on planar and bounded-treewidth graphs.

In Stefano Leonardi, editor, *Internet and Network Economics*, volume 5929 of *Lecture Notes in Computer Science*, pages 125–136. Springer Berlin Heidelberg, 2009.

Backup I

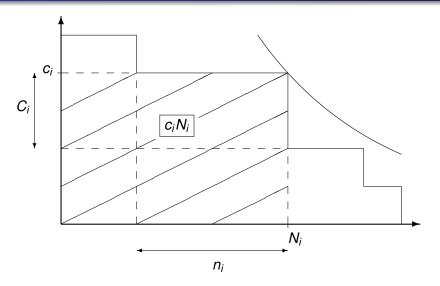


Figure: Exemple de distribution des coûts

Backup II

$$(a_i)_{1 \le i \le k}$$

On a $\frac{a_i - a_{i-1}}{a_i} \le \frac{1}{a_{i-1} + 1} + \dots + \frac{1}{a_i}$ donc

$$\sum_{i=1}^k \frac{a_i - a_{i-1}}{a_i} \le 1 + \sum_{j=a_1+1}^{a_k} \frac{1}{j}$$

Et
$$\frac{1}{n} \leq \int_{n-1}^{n} \frac{dt}{t} d'où$$
 :

$$1 + \sum_{j=a_1+1}^{a_k} \frac{1}{j} = 1 + \int_{a_1}^{a_k} \frac{dt}{t} \le 1 + \ln\left(\frac{a_k}{a_1}\right)$$

