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Le contexte général

Le problème StackMST (pour Stackelberg Minimum Spanning Tree) est un jeux à deux
joueurs et un tour, avec deux niveaux d’optimisation. Il se déroule sur un graphe avec
deux types d’arêtes : le premier joueur fixe le poids des arêtes du premier type tandis
que les autres ont des poids fixés. Le deuxième joueur choisit alors un arbre couvrant
de poids minimum, et le but du premier joueur est de gagner le maximum avec ses
arêtes dans l’arbre couvrant de poids minimum.

Ce problème est NP-difficile et APX-difficile dans le cas général, et P avec certaines
classes de graphe. Autrement, un algorithme d’approximation avec un facteur non
constant est connu.

Le problème étudié

Pour certaines classes de graphe, la question de la complexité du problème est
encore ouverte et, dans le cas général, la question de l’existence d’un algorithme
d’approximation avec un facteur constant l’est également. Quelques papiers ont été
publiés sur ce problème, mais de nombreuses questions subsistent.

La contribution proposée

Nous avons montré que certaines restrictions du problème étaient toujours NP-
difficiles, et nous avons cherché un algorithme d’approximation avec un facteur con-
stant à l’aide d’un programme linéaire, mais sans avoir abouti pour le moment. Notre
programme linéaire semble meilleur qu’une autre proposition publiée, mais nous ne
connaissons pas encore son integrality gap, et il n’est pas évident de savoir comment
utiliser une solution fractionnaire pour aboutir à un algorithme d’approximation.

Les arguments en faveur de sa validité

Les instances qui mettent en évidence l’integrality gap du programme linéaire publié ne
sont pas des solutions réalisables de notre programme linéaire, qui reste tout de même
une formulation du problème.

Le bilan et les perspectives

Notre approche était liée au problème étudié, mais les techniques classiques en théorie
des algorithmes d’approximation et en programmation linéaire que j’ai apprises peu-
vent servir à chercher et à étudier des algorithmes d’approximation pour de nombreux
problèmes.

Nos résultats de complexité sont intéressants mais laissent ouverte une nouvelle
question de complexité (entre deux graphes avec deux prix et deux chemins avec trois
prix reste la question de la complexité du problème avec deux chemins – ou même
deux arbres – et seulement deux prix).

Enfin le travail sur notre programme linéaire n’est pas abouti : par exemple la ques-
tion, cruciale, de son integrality gap n’est pas résolue.



During this Master 1 internship of ten weeks at the Universidad de Chile, in Santiago,
I studied with Jose Correa, Professor, and Jose Soto, Assistant Professor, the problem
StackMST. It is a problem easy to state but there are a lot of questions that stay open.

We have mainly looked for a better approximation algorithm for this NP-hard prob-
lem, and this research has leaded us to some complexity results on restrictions of this
problem.

1 Problem statement

Imagine a network where there is two types of links: some of them are yours, and
the others belong to your competitor. Somebody wants to link all the points of the
network, that is to rent links in order to construct a spanning tree. Each link has a
price, so the person will try to minimize his expenses: he will rent a minimum spanning
tree (MST). Knowing costs that your competitor practice, what are the optimum price
you can choose to maximise your revenue ? That is the sum of the price of each link in
the MST that belong to you. If your pricing policy is too aggressive, very few of your
links will be selected: your revenue will be low. Conversely, it your policy is too few
aggressive, your will not earn much for each link. . .

Formally, the network is a graph G = (V,R t B) where the edges are partitioned
into two sets: the red edges in R and the blue ones in B. Edges in R are labelled with
a cost function c : R → R. They are the links of your opponent. Also R is supposed to
contain a spanning tree, otherwise there is a cut consisting only of blue edges and the
problem is unbounded.

Then the two players come into play: the leader chooses a price function p : B → R
and the follower takes a minimum spanning tree T of G, with regards to both c and p.
The leader tries to maximise his revenue, i.e. to maximise∑

e∈T∩B

p(e)

This is a Stackelberg game: a leader and a follower, with two stages of optimisation.

We assume that during the construction of the spanning tree, the follower will pre-
fer, at the same cost, blue edges to red edges. Otherwise we can reduce all the price by
small amount and approach as close as wanted the best possible revenue.
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Figure 1: An example of instance, and a price function with one of its corresponding
MST in bold, whose revenue is 6.
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1.1 Notations

In all this report we will use the following notations:

• c1 < · · · < ck are the different values taken by c. So k is the number of different
values.

• For a set of edge A, and a price p, we denote by A<p the subset of A with edges
cheaper than p, and so one with ≤, >, ≥, and =.

For 1 ≤ j ≤ k we note A≤j for A≤cj with an abuse of notation.

• For a set of vertices S, we denote by A(S) the subset of A with edges that have
both endpoints in S, i.e. A(S) = A ∩ (S × S).

1.2 Greedy algorithms for MST

It is handful to have in mind both Kruskal’s and Prim’s algorithms. These greedy
algorithms find an MST of a connected weighted graph.

Here is how Kruskal’s operates: it sorts edges by increasing weight, then, starting
with an empty tree, it considers each edge in this order and adds them to the tree as
long as it does not induce a cycle. When all the edges have been considered, the tree
spans the graph, and one can prove that it is an MST.

For its part, Prim’s algorithm starts with a tree that contains only one node, then it
finds the cheapest edge that have exactly one endpoint in this tree, and adds it to the
tree. It repeats this operation until no such edge exist.

Here, in agreement with our assumption, we consider that both algorithms choose
blue edges before red edges of the same price.

1.3 Some remarks

There is always an optimal price function that takes the same values than the cost func-
tion c. Indeed with any price function, we can increase other prices while maintaining
the same MST until they reach values of c, and decrease prices for edges that are more
expensive than the largest cost: they are not selected in any MST and if reduce their
costs may add them to an MST, it will increase the revenue (see Kruskal’s algorithm to
be convinced).

Consequently, we will consider only price functions that takes these values.

Moreover, on the assumption that blue edges are preferred, all MST lead to the same
revenue [CDF+11].

1.4 Additional assumptions

Remark 1. We can assume that R is a tree.

Indeed we can assume that R is reduced to one of its MST. Otherwise, because R
is connected, there is a red cycle and as its heaviest edge will be never selected, and
then will not interact with blue edges neither, we can omit it. By repeating this process
we find an MST of R. If there are several such edges in a cycle one can choose which
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one delete, see remark 3 for an argument with connected components of edges cheaper
than a given price.

Remark 2. We can assume that B contains a spanning tree.

Otherwise, there is a cut of only red edges, and contract one of the cheapest edge of
this cut will not change the revenue of any solution. Indeed it will always be selected in
any MST in order to connect the two sides of the cut. Because all MST lead to the same
revenue, if there are several such edges one can choose arbitrarily which one contract.

To finish a new insight:

Remark 3. We can assume that R is a path.

With Kruskal’s algorithm the decision of adding or skipping an edge of weight p
depends only on the connected components formed by edges of weight smaller than p.
Hence, we can construct R′ a path such that, for all weight p, the graphs (V,R≤p) and
(V,R′≤p) have the same connected components. Thus for every blue price function,
Kruskal’s algorithm can select the same blue edges. In particular both problems have
the same optimal revenue and solution.

1.5 State of the art

1.5.1 Complexity and approximation

The problem is known to be NP-hard and APX-hard even when c only takes values 1
and 2 [CDF+11]. In section 3 an idea of the reduction is depicted.

A non-constant approximation is known, along with a linear program that is a for-
mulation of StackMST and whose the integrality gap is exactly the approximation fac-
tor. Both are explained further.

It is also known to be NP-hard even on planar graph and when c only takes values
1 and 2 [CDF+09].

However some cases are in P: series-parallel graphs and bounded-treewidth graphs
via dynamic programming [CDF+09]. The case when R is a tree and B is the complete
graph but R is polynomial if c take only two prices, otherwise it is approximable be-
tween 7/4 + ε, though the question of NP-hardness is still open [BGLP10]. They also
give a 2h+ ε approximation when the radius of R is bounded by h.

A generalisation of the problem with activation costs and a budget is also studied
in [BGLP10].

1.5.2 A way to solve StackMST

Let F ⊂ B an acyclic set of blue edges. The optimal price function such that all the
edges in F are selected in an MST is computable. For an edge e ∈ F , let C(F, e) the set
of cycle in the graph (V, F ∪R) that contains e. Then we set

p(e) = min
C∈C(F,e)

max
f∈C∩R

c(f)

that is for each such cycle, keep the most expensive red edge, and price e like the
cheapest of them.
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The proof that all F is selected and the revenue is optimal is in [CDF+11].

Since it is computable in polynomial time, a way to solve StackMST is to guess
which acyclic set of blue edges has to be selected. In fact some algorithms cited in the
previous section keep trace of which edges select.

2 Best-out-of-k algorithm

This is the best known approximation algorithm for StackMST in the general case. It
appears in [CDF+11] with a proof of its approximation factor.

This algorithm is very simple: it tries for 1 ≤ i ≤ k to put all blue edges at price ci,
computes the revenues and keeps the best solution.

Its approximation factor is

min

{
k, 1 + ln

(
c1
ck

)
, 1 + ln(|B|)

}
where k is the number of different costs, c1/ck the ratio between the largest and the
smallest red costs, and |B| the number of blue edges. There exists tight instances for
each of the factor.

In appendix A, we include a proof of these factors that is slightly shorter than
in [CDF+11], and includes a graphical comprehension of logarithmic factors.

2.1 Best-out-of-k with optimisation

We know that one can optimise a price function in order to keep the same set of selected
blue edges.

Then a legitimate idea is to execute Best-out-of-k and optimise the price functions
for each cost. This algorithm is optimal on all tight instances of Best-out-of-k exhib-
ited in [CDF+11]: the optimum use all the blue edges, which are all selected with the
cheapest cost. However we do not know if it is better than best-out-of-k without opti-
misation.

Here is an example in which both algorithms have the same factor. This example
uses two path and two prices, a situation that we do not know to be NP-hard.

n+ 2

1

1 1

1 1 1 1

n segment

Figure 2: The factor is 2 either with or without optimisation.

In figure 2, both revenues found by best-out-of-k are n + 2, and in both cases the
optimisation does not improve it. On the other hand the optimum is 2n + 2 (the two
leftmost blue edge have price n + 2, the others 1). Thus the limit of the ratio between
the returned value and the optimum is 1/2 as n approaches +∞.

Though we don’t know if this algorithm is better than best-out-of-k.
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3 Some more NP-hardness results

3.1 NP-hardness with a fixed set of to-be-selected red edges

Let us recall the idea of the reduction in [CDF+11], which will be used to prove a
stronger result.

u1 u2 u3 u4 u5 u6

S1 S2 S3

1 1 1 1 1

22

2
2

2
1

1
1 1 1 2

1
1

u1 u2 u3 u4 u5 u6

S1 S2 S3

1 1 1 1 1

22

2
2

2
1

1
1 1 1 2

1
1

Figure 3: The constructed instance for the set cover S1 = {u1, u2, u3, u4, u6}, S2 =
{u3, u4, u6}, and S3 = {u5, u6}, and the constructed solution for the cover S1, S3: their
edges are priced 1, the others 2. Bold edges denote an MST.

The reduction is from SET COVER, and here is the idea: let an instance of SET
COVER with sets S1, . . . , Sm and elements u1, . . . , un. We can suppose w.l.o.g. that un
is in all sets. Then we construct an instance of StackMST with n + m vertices, one for
each element and set. A red path connects u1 − · · · − un − Sm − · · · − S1 with edges of
cost 1 between vertices ui and ui+1, then edges of cost 2. A blue edge connects Sj and
ui if and only if ui ∈ Sj . See figure 3.

Then they show that there exists a cover of size at most t if and only if there exists a
price function that leads to a revenue of at least n+ 2m− t− 1.

Let us describe our stronger result.

We know that solve StackMST is equivalent to select the best set of blue edges that
must be in the MST. That is, for a given set of blue edges, we can compute in polyno-
mial time the optimal price function that leads to an MST containing this set.

In a similar way we thought a moment to use a linear program relaxation to elect
exactly which red edges must be in an MST. However, solve StackMST with a fixed
such set is still NP-hard, since it is even when this set is empty.

Indeed one can remark that, in the previous reduction, if there is a cover of size t,
there is a solution of revenue n+2m− t−1 which do not use any red edges. Therefore,
with the same reduction than above, the question "is there a cover of size at most t"
and "is there a price function that leads to a revenue of at least n + 2m − t − 1, and an
MST does not contains any red edges" are equivalent. The previous construction shows
the forward direction, and the converse holds because it holds without the additional
restriction.
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Theorem 1. StackMST is NP-hard even when one elect exactly which red edges must go in an
MST.

3.2 NP-hardness when R and B are paths

Firstly a useful lemma:

Lemma 1. Let p a price function on blue edges.

Increase the price of a blue edge e will lead to a loss of revenue of at most its old price. More
precisely, if F is the set of blue edges in an MST with regards to the old price function, one can
construct an MST with regards to the new price function that contains F \ {e}.

Proof. Let e = (a, b) ∈ B a blue edge. Let p′ the price function that matches p on B \ {e}
and such that p′(e) > p(e).

Let T an MST with regards to p. We claim that there exists f ∈ R ∪ B such that
(T \ {e}) ∪ {f} is an MST with regards to p′. f is the edge that connects the two
components containing the endpoints a and b of e.

Consider an execution E of Kruskal’s algorithm that leads to T . We construct a
similar execution E ′ for p′ that leads to the announced tree. In a first time, E ′ will select
the same edges T ′ than E except e. Then, as soon as it is one of the cheapest edges, E ′
will select an edge f that connects the two trees that contain a and b, the endpoints of
e. Given that it is done as soon as possible, this shows that the first part of E ′ is correct:
at each step the set of candidate edges is the same as in E , plus the edges that connect
the components of a and b, but these last edges were not the cheapest in the first phase.
At this point the forest maintained by E ′ is T ′ ∪ {f} and we know that there is a step in
which the forest maintained by E is T ′ ∪ {e}, and these two forests contain exactly the
same connected components of vertices. Thus E ′ can complete its tree with same edges
than in E , and the generated MST is (T \ {e}) ∪ {f} as claimed.

If r(T ) is the revenue given by T , the revenue become r(T ) − p(e) + p(f) if f ∈ B,
or r(T )− p(e) otherwise. Thus the loss is at most p(e).
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Figure 4: Vertices are copied and linked with red edges of cost ε such that B becomes
a path.

Let G, c an instance of StackMST where G = (V,R t B) is the graph and c the cost
function.
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We construct a new instance G′ = (V ′, R′ tB′), c′ in which R′ and B′ are paths. See
figure 4 for an example of construction.

Let 0 ≤ ε < 1
2|B| a real. We assume that ε < c1, where c1 is the cheapest cost of the

instance (we can assume that c1 > 0 since StackMST only with instances whose costs
are 1 or 2 is still NP-hard).

Let v0 ∈ V a vertex, and (v0, v1, . . . , vm = v0) the list of vertices (with copies at each
pass) met during a depth-first traversing of (V,B), starting at v0. Let f the function that
maps each element of this list to the original vertex of V to which it corresponds.

We set V ′ = {v0, v1, . . . , vm}, and B′ = {(vi, vi+1), 0 ≤ i < m}. B′ is obviously a path,
where each edge has been doubled.

Now we construct R′. For each v ∈ V , f−1({v}) is the set of copies of v in V ′. We
link these vertices together with a red path whose edges have cost ε.

Then for each e = (a, b) ∈ R, we select two copies of a and b in V ′, that are vi and
vj such that f(vi) = a and f(vj) = b. It is possible because B contains a spanning tree,
thus the depth-first traversing visits all vertices. We link vi and vj by a red edge of cost
c(e).

Now if we quotient G′ by f , that is to say identifying vertices with same value and
eliminate loops and parallel blue edges, G′ become isomorphic to G: all the copies of
each vertex collapse, thus no edges of costs ε stay, the duplication of blue edges are
deleted and then blue and red edges connect vertices as in G.

Let K ∈ N a positive integer. Then questions "is there a price function on B such that
the revenue is at least K" and "is there a price function on B′ such that the revenue is
at least K" are equivalent.

Let p : B → R a price function on B that leads to a revenue greater than K. Let
p′ : B′ → R such that for e = (a, b) ∈ B, we keep the same price on both copies of e,
i.e. if (vi, vj) ∈ B′ such that f(vi) = a, f(vj) = b, then p′((vi, vj)) = p(e). The revenue of
p′ is greater than K: in an execution of Kruskal’s algorithm, all the red edges of cost ε
are selected. Then both graphs are isomorphic if we contract these edges, and p and p′

match.

Conversely, let p′ a cost function on B′ that leads to a revenue greater than K. We
first replace value ε by an other price: let p′′ such that

∀e ∈ B′, p′′(e) =

{
c1 if p′(e) = ε

p′(e) otherwise

According to lemma 1, the loss of revenue is at most ε|p′−1({ε})| ≤ ε|B′| ≤ ε2|B| < 1.
Then, since p′ leads to a revenue greater than an integer K, the revenue of p′′ is an
integer greater than K − ε|B′|, that is also an integer greater than K. Let p defined by,
for all e = (a, b) ∈ B,

p(e) = min
(u,v)∈B′,f(u)=a,f(v)=b

{p′′((u, v))}

the minimum price for all copies of e.

Now p and p′′ lead to the same revenue. Indeed in an execution of Kruskal’s algo-
rithm for G′ and p′′, all the red edges of cost ε are selected, because no blue edges of
this price exist. Then only the blue edge of minimum price between two ε-connected
components count because if there is two such edges, they create a cycle with red edges
of cost ε. Thus the situation is exactly the same as in G, and both revenue are equals.

To conclude, we know with remark 3 that G′ can be transformed into an equivalent
instance in which R′ become a path, without transforming B′. Note that if R was a
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path, we can easily construct R′ in order to keep a collection of paths at each step, and
a path at the end.

Theorem 2. StackMST is NP-hard even when c takes three different values and R and B are
paths.

With only two different costs, the question is still open when B is a tree or a path.

4 Towards a better IP

Let us recall the IP (integer program) of [CDF+11].
For any family of set of vertices C1, . . . , Ct pairwise disjoint, δ(C1 : · · · : Ct) is the multi-
cut of these sets, that is the set of edges that have one endpoint in a set, and the other
endpoint in another. When C1 = S and C2 = V \ S, we note δ(S) = δ(C1 : C2).
For e ∈ B, and 1 ≤ j ≤ k, the variable xj,e is 1 if the edge e has cost at least j.

There is the IP:

max
∑
e∈B

1≤j≤k

(cj − cj−1)xj,e

s.t. ∑
e∈B∩δ(C1:C2:···:Ct)

xj,e ≤ t− 1 ∀j ∈ {1, 2, . . . , k}, (1)

∀C1, . . . , Ct components of (V,R≤j−1);∑
e∈P∩B

x1,e + xj,f ≤ |P ∩B| ∀f = ab ∈ B, ∀j ∈ {2, 3, . . . , k}, (2)

∀Pab-path in (B ∪R≤j−1) \ {f};
x1,e ≥ x2,e ≥ · · · ≥ xk,e ≥ 0 ∀e ∈ B; (3)
xj,e ∈ {0, 1} ∀j ∈ {1, 2, . . . , k},∀e ∈ B. (4)

Constraints (1) hold because, in Kruskal’s algorithm, all the Ci become connected
components before select any edge of cost cj . Then select more than t − 1 edge in the
multi-cut will lead to a cycle.

Constraints (2) hold because in a such cycle, not all the blue and the red edges can
be selected. Then if f is priced at least cj , it is more expensive than all the red edges in
the cycle, and at least one blue edge has to be dropped.

It is a formulation of StackMST, and the integrality gap of its LP-relaxation is the
approximation factor of the algorithm Best-out-of-k: min{k, 1+ln(|B|), ln(c1/ck)}. There
are tight instances for each case.

Now there is our new proposal:

We consider k copies of each blue edge: one for each possible price. In this way, we
work with the weighted graph (V,R t B1 t · · · t Bk) where each Bj is a copy of B in
which edges have weight cj .
We denote by E all the edges, i.e. E = R∪B1∪· · ·∪Bk. For any edge e in E, we denote
by pe its weight.
For a set S of vertices, we denote by δ̄(S), the set {e ∈ δ(S)|pe ≤ minf∈δ(S)∩R pf}. This
is the set of edges cheaper that the cheapest red edge of the cut.
The variables are xe, for all e ∈ E. Their interpretation is that the set of edges whose
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variable equal 1 are an MST for some price function. For any set of edge A, we use the
shorthand x(A) for

∑
e∈A xe.

And for e ∈ B, we denote when necessary ej the copy of e in Bj , whose price is cj .

Then here is the IP:

max
∑

e∈B1∪···∪Bk

xepe

s.t.

x(E) = |V | − 1; (5)
x(δ̄(S)) ≥ 1 ∀S  V, S 6= ∅; (6)
|R≤j−1(S)|+ x(E≥j(S)) ≤ |S| − 1 ∀j ∈ {1, . . . , k}, ∀S ⊂ V, S 6= ∅; (7)
xe ∈ {0, 1} ∀e ∈ E. (8)

4.1 Formulation

Firstly, let us give an intuition on constraints.

The constraint (5) ensures that the variables denote a set of edges that have as many
edges as in a spanning tree.

Constraints (6) ensure that we select one of the cheaper candidate edges for any cut:
we have to select at least one edge cheaper than the cheapest red edge of the cut. This
is the idea behind Prim’s algorithm.

Constraints (7) is an improved version of the cycle-elimination constraint
x(E(S)) ≤ |S| − 1 (with j = 1). During an execution of Kruskal’s algorithm, when it
considers edges of price cj , the endpoints of R≤j−1(S) are already connected together,
it implies that not a lot of edges in x(E≥j(S)) can be selected.

Also note that for all edge e = (a, b) ∈ B, this constraint with S = {a, b} and j = 1
implies

∑
1≤j≤k xej ≤ 1 (uniqueness of variable valued 1 for each original edge).

Proposition 1. This IP is a formulation of StackMST.

Proof. Let p a price function, and T an MST of G weighted by both c and p.
For all e ∈ R, we set xe = 1 iff e ∈ T , and for all e ∈ B1 ∪ · · ·Bk, let e′ its original copy
in B, and we set

xe =

{
1 if e′ ∈ T and p(e′) = pe

0 otherwise

that is xe is 1 iff e appears in T with the price pe.

Then constraints (5) and (8) holds.

Constraints (6): with the proof of Prim’s algorithm in mind, we know that for all cut
δ(S), any MST must contains one of the cheapest edge of the cut. Well, δ̄(S) contains
all the cheapest edges of the cut.

Constraints (7): let S ⊂ V , S 6= ∅, and 1 ≤ j ≤ k. Let e ∈ R≤j−1(S). In an execution
of Kruskal’s algorithm, its endpoints has to be connected before consider any edge
of cost cj . Thus when the algorithm will consider edges of costs at least cj , it has to
connect at most |S| − |R≤j−1(S)| connected components, and this is done with at most
|S| − |R≤j−1(S)| − 1 edges. This shows the constraint.

Conversely, let x a feasible solution of the IP.
For e in E, if there exists j such that xej = 1 we set p(e) = cj , otherwise we set p(e) =
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+∞.
Let T = {e ∈ E|xe = 1}.
We show that T (considered with original copies of blue edges) is an MST for G with
price function p. With (5) and (7) with j = 1, we know that T is a tree.

Let S ⊂ V , S 6= V and S 6= ∅. We show that one of the cheapest edge of G in the cut
δ(S) is in T .
With (6) we have x(δ̄(S)) ≥ 1, then δ̄(S) ∩ T contains at least one edge, including one
of the cheapest edge of the whole cut. Indeed if there is a cheapest edge that is blue,
is it in T , otherwise its price was +∞, and in δ̄(S), otherwise a red edge of the cut is
cheaper. If there are no cheapest blue edges, it is because they are more expensive than
the cheapest red edge of the cut, then they do not appear in δ̄(S), or are not selected
and are priced +∞. Thus the only edges of δ̄(S) that can be valued 1 in the IP are the
red ones, that are by construction of δ̄ the cheapest of the cut.

Given that this holds for any S, this shows that T is a minimum spanning tree as in
Prim’s algorithm, and the objective value is actually the revenue.

Constraints 7 with j > 1 are there for improving the integrality gap of the LP-
relaxation of this IP (at least they break some bad instances of the first LP-relaxation).

4.2 Separation

The aim of this IP is to solve its LP-relaxation (by removing constraints (8)) and to use
a fractional solution in order to find a good solution of the instance.

If the exponential number of constraints may be an issue to solve the LP-relaxation
in polynomial time with regards to the size of the instance, it is known with the el-
lipsoid method that if one is able to solve the separation problem in polynomial time,
then it is possible to solve the optimisation problem as well.

Let us recall that the separation problem for an LP is the following: given a vector
x, say if x is a feasible solution of the LP, and if not, give a violated constraint.

Proposition 2. This LP-relaxation is separable in polynomial time.

Proof. Constraints (7): we use the fact that one can find the maximum of a supermodu-
lar function in polynomial time [Cun85]. Nevertheless, we ask here for S 6= 0 whereas
this result ask for no constraints, such as minimal cardinality. Therefore we use the
following set of constraints that is equivalent to constraints (7):

|R≤j−1(S)|+ x(E≥j(S)) ≤ max{|S| − 1, 0} ∀j ∈ {1, . . . , k},∀S ⊂ V (9)

Now, for a fixed j, the function

S 7→ |R≤j−1(S)|+ x(E≥j(S))−max{|S| − 1, 0}

is supermodular as it is a sum of simple supermodular functions. Then it is possible
to find its maximum and check that it is negative. Otherwise it provides a violated
constraint in (9), and it can not be for S = ∅ so it provides also a violated constraint
in (7).

Constraints (6): for each red edge e = (a, b), find the min-cut in (V,E≤pe) that sepa-
rates a and b. Then check that it is greater than 1.

To finish, there is a polynomial number of constraints (5) and (8), thus it is sufficient
to check them one by one.
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4.3 Stronger than the other LP-relaxation ?

The bad instances for the first LP-relaxation do not hold with our LP-relaxation. How-
ever we do not now the integrality gap of ours, which can be also bad.

We tried to show that our LP is at least as good as the first LP.

A solution x of our LP can easily be adapted into a solution x̃ of the first LP, by
setting

∀e ∈ B, ∀1 ≤ j ≤ k, x̃j,e =
k∑
l=j

xel

Then constraints (3) holds, and constraints (8) imply constraints (4) in the integral case.

Constraints (7) are stronger than constraints (1): let j ∈ {1, 2, . . . , k} and C1, . . . , Ct
components of (V,R≤j−1). We set S = C1 ∪ · · · ∪ Ct, then (7) gives

|R≤j−1(S)|+ x(E≥j(S)) ≤ |S| − 1

Moreover, since there are at most t connected components in (S,R≤j−1),

|R≤j−1(S)| ≥ |S| − t
then by subtracting both

x(E≥j(S)) ≤ t− 1

and the set E≥j(S) contains all edges considered in (1), along with much more.

This constraint is thus an asset to improve the integrality gap of the LP-relaxation.
However we do not know if constraints (2) are implied by our LP, but an LP with
constraints (7) and (2) is, for sure, stronger.

To finish, we considered the set of constraints

|R≤j−1(S)|+ x(E≥j(S)) + x(F≤j−1) ≤ |S| − 1 ∀j ∈ {1, . . . , k},∀S ⊂ V, S 6= ∅, (10)
∀F ⊂ E(S) s.t. R≤j−1(S) ∪ F is acyclic.

where two copies of the same blue edges are not considered to induce a cycle. These
constraints imply both constraints (1) and (2) of the first LP, but do not seem to be
separable.

4.4 No algorithm stands out

It is unclear how to use a fractional solution to guess a good solution.

Plus the selection of blue edges have to be done carefully: if forget an edge lead, at
worst, only to its loss, select one more edge can wipe out the revenue.

Conclusion

Our new results of NP-hardness were welcome and have given us some insight in this
problem. Nevertheless, they leave a thin subproblem between graphs with only two
different prices and paths with three prices: paths with two prices, for which the NP-
hardness stays an open question.

On the other hand, our work on the LP is not finished. Since this LP seems to
be stronger that the last LP, it may be a progression towards a better approximation
algorithm for StackMST than best-out-of-k. However, several questions stay open, such
that its integrality gap.
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To conclude I would thank Jose Correa for having received me in this country muy
distinto, and Jose Soto who have worked with us.
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Appendices

A Proof of the factor of best-out-of-k

We denote by c1 < · · · < ck the different values taken by c, and by ni = |{e ∈ R |
c(e) = ci}| the number of red edges labelled with ci. We also denote by Ni =

∑k
j=i nj

the number of red edges of cost at least ci.

Because it is the cost of the red spanning tree, we have

OPT ≤
k∑
i=1

cini

Lemma 2. Let i ∈ {1, . . . , k}.
Suppose that for all e in B, p(e) = ci. Then Ni blue edges are selected in any MST.

Proof. Let us analyse the construction of an MST by Kruskal’s algorithm. Since R is a
tree it does not contain any cycles, and then all the edges of cost c1, . . . , ci−1 are selected.
If K is their number, at this step there is a lack of |R| −K = Ni edges that will be blue
because B contains a spanning tree.

k-approximation According to lemma 2, we have

SOL = max
i∈{1,...,k}

{ciNi}

Then
SOL ≥

∑k
i=1 ciNi

k

≥
∑k

i=1 cini

k

≥ OPT
k

shows the first approximation factor.
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Figure 5: Example of costs distribution

(1+ln(|B|))-approximation In figure 5 we show an example of red costs distribution.
We put each edge on the x-axis by decreasing costs, represented on the y-axis. Thus a
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vertical rectangle have as height a costs ci and as width the number of red edges that
have this cost.

Then take a rectangle like the hatched one on the figure. Its area ciNi is the revenue
by putting all prices to ci, so the algorithm returns the area of the biggest such rectangle.

Note that the total area under the curve is
∑k

i=1 cini, our upper-bound for OPT.

Now we wonder what if the biggest possible total area knowing that SOL is the
revenue returned by the algorithm, that is the one that maximise ciNi. All the other
rectangles have smaller area, then their top-right corner are under the curve of equa-
tion y = SOL/x. The total area is thus smaller that the area under this curve, which
leads to the two logarithmic bounds.

Now comes a formal proof.

Given that for all i in {1, . . . , k}, SOL ≥ ciNi we have ci ≤ SOL
Ni

.
Then

OPT ≤
∑k

i=1 cini
≤ SOL

∑k
i=1

ni

Ni

and ∑k
i=1

ni

Ni
≤ 1 + ln(N1/Nk)

≤ 1 + ln(|B|)

(1 + ln(ck/c1))-approximation As previously, for all i in {1, . . . , k}we have Ni ≤ SOL
ci

.
Let Ci = ci − ci−1, agreeing that c0 = 0. Since

∑k
i=1 cini =

∑k
i=1CiNi we have

OPT ≤
∑k

i=1CiNi

≤ SOL
∑k

i=1
Ci

ci

≤ (1 + ln(ck/c1))SOL

This completes the proof.
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