
Internship report � Contraction hierarchies in transportation

networks

Olivier Marty, supervised by Laurent Viennot, INRIA, Université Paris 7

14th March � 12th August 2016

Le contexte général

La recherche de plus court chemin dans un graphe est un problème classique d'algorithmique.
Dans un environnement où de nombreuses requêtes sont posées sur un même graphe, il de-
vient intéressant d'e�ectuer un prétraitement, qui peut être coûteux, pour ensuite répondre
aux requêtes plus rapidement. Plusieurs méthodes [BDG+15] existent et nombre d'entre-elles
utilisent l'idée de raccourcis (ajouter des arêtes dans le graphe), dont contraction hierar-
chies [GSSD08] qui compte parmi les plus e�caces dans le cas des graphes routiers.

Le problème étudié

Nous avons essayé d'appliquer les idées de contraction hierarchies aux graphes de transport
en commun (bus, métros...), ce qui pourrait accélérer le temps de réponse lors de la recherche
d'un itinéraire. Avec ce type de graphe la donne change car le temps de parcours d'une arête
dépend de l'heure de départ et certains sommets ont des degrés bien plus grands que dans un
graphe routier.

Ce problème a déjà été étudié mais l'équipe s'était confronté à un échec et avait dû simpli�er
le graphe d'entrée [Gei09]. Cette simpli�cation a le mérite de faire fonctionner contraction
hierarchies mais impose de nombreux ajustements dans l'algorithme, et ne permet d'obtenir
parfois qu'un résultat approché. Nous pensions que les ajustements e�ectués étaient plus
compliqués que nécessaires, et voulions simpli�er leur méthode.

La contribution proposée

Contraction hierarchies contracte les noeuds du graphe un par un, dans un ordre donné par des
heuristiques. Après avoir essayé d'améliorer ces heuristiques et constaté que le prétraitement
ne �nissait pas en un temps raisonnable, nous avons observé que le graphe est décomposable
à l'aide de petits séparateurs équilibrés. Nous avons utilisé cette décomposition pour trouver
un ordre de contraction qui, de pair avec une représentation des données ad hoc, permet à
l'algorithme de terminer su�samment rapidement. En outre cet ordre dé�e la logique des
heuristiques habituellement utilisées, c'est-à-dire qu'il commence par contracter les sommets
habituellement réservés pour la �n.

Les arguments en faveur de sa validité

D'après nos expériences, contraction hierarchies ne permet pas toujours de calculer les plus
court chemins de manière signi�cativement plus rapide, mais les pro�l de temps (tous les plus
courts chemins entre deux stations sur une journée entière) sont, eux, bien plus rapides à
obtenir.

De plus, notre solution dépend uniquement de la structure du graphe : il doit avoir récur-
sivement des petits séparateurs équilibrés. Le fait de supprimer certaines optimisations de
contraction hierarchies classique rend indépendant la réussite du prétraitement aux poids des
arêtes. Notre solution est donc plus robuste, car elle ne dépend que de la structure combina-
toire du graphe donné (et de son plongement pour notre façon de trouver les séparateurs).

Le bilan et les perspectives

Notre étude montre qu'il est possible d'utiliser contraction hierarchies avec un graphe de
transport en commun. La méthode utilisée est généralisable à tout graphe possédant des

1

petits séparateurs équilibrés récursivement et pondérés dans un semi-anneau pour lequel aucun
cycle n'a de poids négatif (voir Section 3.5 pour une dé�nition abstraite de l'absence de cycle
négatifs).

Notre algorithme, au coût d'un prétraitement encore lourd, permet de calculer les it-
inéraires et les pro�ls de temps en quelques millisecondes.

Finalement nous avons fait des expériences sur le graphe de transport en commun de
la RATP connecté au graphes routier, ce qui permet de trouver des itinéraires mélangeant
marche à pied et transports sans aucune limite sur la longueur des tronçons à pied. Si les
temps de prétraitement et de requêtes sont bien trop longs pour être utilisable en pratique,
c'est, à notre connaissance, la première méthode pour accélérer les requêtes sans imposer un
temps de marche maximal.

2

During this Master 2 internship at the University Paris 7 Paris Diderot, I studied for
�ve months with Laurent Viennot the contraction hierarchies technique in the context of
transportation networks. Contraction hierarchies is a speed up technique for the Dijkstra's
shortest path algorithm which works well with road networks, but fails with transportation
graphs. We used one idea to enable the contraction of this kind of graph: the small balanced
separator decomposition. Then we adapted the query algorithm to compute earliest arrival
time queries as well as time pro�le queries. Finally we bene�t from an interesting structure
in the output of contraction hierarchies to design, at the cost of a long preprocessing, a very
fast way to compute time pro�les in transportation graphs.

1 State of the art

1.1 Contraction hierarchies

Contraction hierarchies [GSSD08, AFGW10] is a technique to speed up shortest path queries
in road networks. During a preprocessing phase, shortcuts (new edges) are added to the
given graph. Then these shortcuts along with original edges are used in a slightly modi�ed
bidirectional Dijkstra's algorithm to compute shortest paths.

The input of the algorithm is a directed weighted graph G = (V,E), where V is its vertex
set, and E ⊂ V × V ×R+ its edge set. The set of weights R+ is the set of non negative reals.

We call the distance in G between two vertices u and v the minimum weight d(u, v) of a
path from u to v:

d(u, v) = min

{
n∑

i=1

ai

∣∣∣∣∣ n ∈ N, (u = w0, w1, a1), (w1, w2, a2), . . . , (wn−1, wn = v, an) ∈ E

}

A shortest path is the associated sequence of edges.

1.1.1 Preprocessing

Given G = (V,E), the preprocessing phase outputs a set of new edges E+ and an ordering of
V .

Suppose for the moment that the ordering of V is given, then all the vertices of the graph
are contracted from lowest to highest with respect to this order. Each contraction consists in
forgetting a vertex, and adding shortcuts between its neighbours in order to maintain shortest
paths in the graph. More precisely, when v is contracted, if a path (u, v, a), (v, w, b) is a
shortest path, then a shortcut (u,w, a + b) is added to the graph, its weight being the total
weight of the path. After being contracted a vertex and its connected edges are forgotten until
the end of the preprocessing phase.

The set E+ produced by the algorithm is the set of shortcuts added during contractions.
Figure 1 illustrates the contraction of v. The path (u, v, 1), (v, w, 2) is a shortest path so

we add a shortcut (u,w, 3). The path (u, v, 1), (v, w′, 2) is not a shortest path: no shortcut is
added.

In order to limit the number of shortcuts added, we can perform a shortest path search
to see if a shortcut may be unnecessary. However a complete shortest path search is too
expensive, hence one solution is to look up among the paths of a maximum �xed number of
edges. This method is called the witness search.

3

u

v
w w′

1

22

21 + 2 = 3

Figure 1: Contraction of v

A lot of other optimisations are possible.
A good order of contraction is the keystone of this algorithm. Indeed the queries will be ex-

act for any order, but the number of shortcuts added and the execution time for preprocessing
or answering queries may vary a lot.

1.1.2 Order of contraction

Finding the best order of contraction is APX-hard [Mil12], hence it is computed with some
heuristics. Usually, and unlike our work, it is not set at the beginning but at each step the
next contracted vertex is chosen. For this purpose, a linear combinations of di�erent values is
used, among them [GSSD08, BGSV13]:

• Edge di�erence: the immediate cost on the number of edges: #shortcuts inserted -
#edges removed.

• Cost of queries, or depth: at the beginning depth(u) = 0. Then when a vertex u is
contracted, for all its neighbour v we set depth(v) = max(depth(v), depth(u) + 1). This
value is an upper bound for the length of a path looked up during queries, and helps to
choose vertices more uniformly.

The vertex minimising the combination is contracted.

1.1.3 Shortest path queries

Given G = (V,E), an order < over V and a set of shortcuts E+ (the output of the preprocess-
ing) we de�ne G↑ = (V,E↑) the upward graph where E↑ = {(u, v, a) ∈ E ∪ E+ | u < v} the
subset of increasing (with respect to <) edges and shortcuts. Similarly, we de�ne G↓ = (V,E↓)
where E↓ = {(u, v, a) ∈ E ∪ E+ | u > v} are decreasing edges.

Distance We �rst describe how to �nd the distance between two vertices in G. Given a
source vertex u and a target vertex v, the distance query consists in a bidirectional Dijkstra's
algorithm, but forward search is performed in G↑, and backward search in G↓. More formally,
forward search gives the distance in G↑ between u and each reachable vertex w. We note
d↑(u,w) this distance (or +∞ if w is unreachable). Likewise, we de�ne d↓(w, v) the distance
between w and v in G↓. Then we obtain the distance between u and v in G with

min
w∈V

(d↑(u,w) + d↓(w, v))

4

The intuition is that the highest vertex w on a shortest path from u to v in G in reached
both in G↑ and G↓, and because shortcuts maintain shortest path, d↑(u,w) = d(u,w) and
d↓(w, v) = d(w, v). A proof of the correctness is given in [GSSD08].

The limitation to G↑ and G↓ con�nes the exploration area and the distance computation
is restricted to nodes reachable both in G↑ and G↓. This is why the queries are faster than
plain bidirectional Dijkstra's algorithm.

Shortest path Dijkstra's algorithm can return paths along with distances, but here there
are paths in G↑ and G↓ that may contain shortcuts. To retrieve the corresponding short-
est paths in G, we must unfold the shortcuts. During the contraction, recall for each path
(u,w, a), (w, v, b) that leads to a shortcut (u, v, a + b) that the middle vertex was w. Then
given a path consisting of edges and shortcuts, we can retrieve the original path by recursively
replacing shortcuts with the corresponding two edges.

1.2 Time dependant contraction hierarchies

Previously road networks were modeled with constant weight edges, but in real situations
the traversal time of an edge can vary with tra�c conditions. This is why an extension of
contraction hierarchies for time dependant edge costs was proposed, using piecewise linear
functions to model traversal time [BGSV13]. The cost of an edge is then a function which
maps a departure time at the source of the edge to the corresponding arrival time at its target.

In this extension we distinguish two kinds of queries: earliest arrival time queries (EA)
that ask for the earliest arrival time for a given source, a given target, and a given departure
time, and time pro�le queries (TP) that ask for the earliest arrival time for a given source, a
given target, and all possible departure times.

Some di�culties arise: for contractions there is no concept of shortest path because it de-
pends on the departure time. For EA queries, the forward search is straightforward, during an
edge traversal at a given departure time, the cost function is evaluated to get the arrival time.
Only the arrival time is unknown for backward search. One solution is to mark vertices that
would be explored during backward search, and perform the forward search with increasing
edges and marked vertices. A lot of ideas to optimise the preprocessing phase and the queries
are described in [BGSV13].

1.3 Station graph model for transportation network

In [Gei09] the same problem as ours has been studied: using contraction hierarchies with
transportation networks. However the author �nds out that the time dependant contraction
hierarchies (see Section 1.2) fails on this kind of graphs, and proposes the station graph model.
Indeed it is explained that transportation graphs have a high mean degree, as opposed to road
graphs. As one contraction creates a number of shortcuts in the order of the square of the
degree, the preprocessing takes too many time.

Their solution is to model each station with only one vertex. However stations may have
several platforms, with di�erent transfer times from one to another. The notion of di�erent
platforms is kept, but only one internal transfer time is allowed. Because of this model, the
contraction of a node becomes trickier. Whether two trains share the same platform or not
changes the transfer time, and the edge costs loose the FIFO property: sometimes we can
choose between two trains: one arrives before the other, which leaves later but arrives at

5

the right platform for our change. Furthermore loops may appear in the graph: it may be
interesting to take two trains rather than walking for a long change.

We think that this model is good enough for train network. Indeed each change has to
be long enough to get into the next train, even with a small delay, and we don't often know
the platform in advance. A minimal transfer time of 15 minutes, for example, is not absurd.
However for a metropolis transport network, like one with bus and metro, platforms are known
in advance and transfer time may vary from one to a dozen minutes in the same station.

Moreover the method we propose is more general as stations with constant time inner
transfers can be modeled with small star graphs in our model.

1.4 Small balanced separators of road networks

A small balanced separator S of a graph G = (V,E) is a subset of its vertices V , such that
if we remove them the graph is split into several (at least two) connected components. To
be small we ask the subset to contain few vertices � classically |S| ≤ |V |ε for ε < 1. To be
balanced it is required that the remaining connected components are relatively small � say at
most 2|V |/3 vertices.

Small balanced separators are useful hand in hand with divide and conquer algorithms:
splitting the graph creates smaller instances, whose solutions may be patched up with the
separator.

A simple heuristic that works well for road networks is the following [SS15]: sort the vertices
by longitude (or another direction of the plan), then compute the minimum cut between the
�rst and the last third of the vertices (with a maximum �ow routine). This cut is a balanced
separator of the graph, and is generally small.

1.5 Other methods

There exists other methods to compute journeys in graphs, in particular in transportation
graphs. We reference two of them: RAPTOR [DPW15] and Transfer Patterns [BCE+10].

In a few words, RAPTOR is not Dijkstra-based but takes bene�ts from the structure
of the networks in lines: at each step all reached lines are processed to jump to all their
stations. It is possible to compute time pro�les by launching one query for each departure
time by decreasing order, in order to keep previously computed journeys which are still valid.
Moreover RAPTOR does not perform any preprocessing, which makes it fully dynamic: graph
updates are directly handled.

Transfer Pattern also uses the structure in lines, but it preprocesses the graph to �nds
where the changes are most often done. To make the preprocessing feasible the query results
may be approximate: it �nds journey with at most three di�erent trains, which is often enough
in practice.

Both methods can take into account several criteria, like the number of transfers, or the
travel fees.

1.6 Contributions

We have, for the �rst time up to our knowledge, applied directly contraction hierarchies to
some real life transportation networks, thanks to the small separators of the underlying graph
found with [SS15]. If we were disappointed by the speed up obtained for earliest arrival time
queries, time pro�le queries take advantage of a good performance. Our observation that

6

increasing and decreasing graphs (called G↑ and G↓) are directed acyclic graphs improves a
little bit the time pro�le queries, and allows to precompute e�ciently labels for all vertices.
With these labels we can compute pro�le queries in few milliseconds only, and thus answer
earliest arrival time queries in the same order of time. Finally, our �rst experiments with
mixed transportation and road networks are not entirely satisfactory but our method seems
to be the �rst speed up technique to compute routes in transportation networks without any
limitation on the maximum walking time.

2 De�nitions and problem statement

In this section, we state a general framework for using contraction hierarchies with time
dependant edge costs.

2.1 De�nition

Let G = (V,E) be a directed labelled graph. Each edge (u, v, f) is labelled with an arrival
time function (ATF) f which maps a departure time from u to the corresponding arrival time
f(t) at v.

De�nition 1 (Arrival Time Functions). Let D be a totally ordered set, seen as dates. A set
of functions

T ⊂ DD

is a set of arrival time functions over D if

i) these functions are increasing: ∀f ∈ T , ∀x, y ∈ D, x ≥ y =⇒ f(x) ≥ f(y)

ii) these functions are above the �rst bisector: ∀f ∈ T , ∀t ∈ D, f(t) ≥ t

iii) this set is closed under composition: ∀f, g ∈ T , f ◦ g ∈ T

iv) and under point by point minimum: ∀f, g ∈ T , t 7→ min(f(t), g(t)) ∈ T

Remark 1. In [BGSV13, Gei11, Gei09, Wir15] ◦ is called link. In [Wir15] min is called
merge. In [BGSV13], time travel function (TTF) are used instead of ATF. They are similar,
but a TTF gives the duration of a traversal, instead of the arrival time. For a given ATF f ,
if D = R, its corresponding TTF is t 7→ f(t)− t.

Condition ii ensures that one arrives after leaving. Closure under composition iii allows
to concatenate edges: if one traverses the edge (u, v, f) then (v, w, g), then the ATF of the
path is g ◦ f . Closure under minimum iv allows to consider the shortest paths among two
paths for each departure time: if one can choose between the path u→ v → w, whose ATF is
f , and the path u → v′ → w, whose ATF is g, then min(f, g) gives the earliest arrival dates
going through v or v′. Condition i gives a FIFO property, i.e. it is never faster to wait before
traversing an edge. Moreover this property is needed to give a meaning to compositions: in
order to get the earliest possible arrival time, we don't want to compute the arrival times for
all possible waiting times at the inner vertex but only for no waiting.

7

2.2 Problem statement

A path of G is a �nite sequence of edges ((s0, t0, f0), . . . , (sn, tn, fn)) such that two consecutive
edges are connected: ∀0 ≤ i < n, ti = si+1. Given a path P of G, we denote by ©P the
composition of the labels along the path, i.e. ©((s0, t0, f0), . . . , (sn, tn, fn)) = fn ◦ · · · ◦ f0.
This function is the ATF of the path.

De�nition 2 (Earliest arrival query). Given G = (V,E), given a source u and a target v in
V , given a departure time t in D, we want to compute the earliest possible arrival time. That
is a ∈ D such that

∃P path from u to v,©P (t) = a

∀P path from u to v,©P (t) ≥ a

This problem can be solved using Dijkstra's algorithm [BGSV13, Algorithm 1]: when an
edge is traversed, the departure time is known, therefore its ATF is evaluated to get the
corresponding arrival time. It works because of property i, and because D is totally ordered.
This extension of Dijkstra's algorithm is the reason why ATFs are a natural extension to
constant weights.

Now we are interested in time pro�les: no departure time is given and we want to �nd the
earliest feasible arrival dates to join v from u in G for all departure dates, as an ATF.

De�nition 3 (Time pro�le query). Given G = (V,E), given a source u and a target v in V ,
we want to compute the time pro�le going from u to v. That is the ATF f such that

∀t ∈ D,∃P path from u to v,©P (t) = f(t)

∀t ∈ D,∀P path from u to v,©P (t) ≥ f(t)

Remark 2. An earliest arrival query is the evaluation of the time pro�le for the given depar-
ture date.

This problem can be solved using the Bellman-Ford algorithm. In [BGSV13, Algorithm 2]
a version is presented more like Dijkstra's algorithm, but where vertices can be examined
several times.

2.3 Working framework

Two algorithms are already known to solve these two problems. However in the following we
allow ourselves to make some calculations on the graph before any queries: the preprocessing
phase. Preprocessing may take some time, though the queries can be answered several orders
of magnitude faster. There is a trade-o� between preprocessing time, memory usage, and
query time.

3 Contraction hierarchies with ATFs

We present now an adaptation of contraction hierarchies for graph labelled with ATFs. The
contraction of a vertex and the queries are really similar to previous works.

8

3.1 Preprocessing

3.1.1 Order of contraction

We tried classic heuristics for guessing a good enough order of contraction, but the prepro-
cessing would not terminate in a reasonable time. However, we discovered with the heuristic
of [SS15] (see Section 1.4) that our transportation graphs, seen as undirected for this purpose,
have small balanced separators like road networks. For example we found a separator of 150
vertices in the RATP graph (see Section 5.2.4) which has more than 20.000 vertices.

Given a separator S, we contract, using recursively this technique, vertices in each con-
nected component of the disconnected graph, and �nally we contract each vertex in S. When
the graph is small enough (we use a limit of around ten vertices) we contract all its vertices
without using separators any more. During the contraction of a connected component, some
shortcuts may be added in the separator, but never in other connected components. At most
|S|2 shortcuts are thus added in S.

This hierarchy of separators ensures that not too many shortcuts are added. If we note
C(n) the maximum number of shortcuts added in a graph with n vertices, and assume that
the maximum size S(n) of a separator satis�es S(n) = O(

√
n) (as in planar graphs), then

C(n) = C(αn) + C(βn) + S(n)2 with α, β ≤ 2

3
and (α+ β)n = n− S(n)

≤ C(αn) + C((1− α)n) +O(n)

= O(n log n)
There is at most a quasilinear, in the number of vertices, number of shortcuts. However note
that each shortcut may be updated several times, hence this is not a bound on execution time.

We did not explore this idea, but this decomposition is favourable to parallel computing:
the contraction of the two connected components are nearly independent. Only updates to
the inner edges of the separator have to be taken carefully.

Finally, the biggest stations which have several vertices highly connected and look like
cliques, won't be, presumably, in the �rst separators. Hence its vertices are contracted among
the �rst, whereas they have the highest degrees. This is in con�ict with the idea of starting the
contraction with small degree vertices, which appear with classic heuristics (see Section 1.1.2).

3.1.2 Contraction

The contraction of a vertex is a straightforward adaptation of the classic contraction, but the
sum of two weights become their composition, and their minimum become the point by point
minimum. See �gure 2 for an example.

Furthermore, we do not perform witness search: they are expensive and the order of
contraction constructed with separators ensures that not too many shortcuts are created. We
measured that trying to avoid some shortcuts does not improve signi�cantly the size of the
resulting graph, and increases the execution time. Another bene�t is that the contraction will
work in the same manner whatever the functions are.

3.2 Earliest arrival queries

We solve these queries like in [BGSV13]: we mark the vertices from which the target vertex
is reachable in G↓, and we perform a Dijkstra's search using increasing edges (those in G↑)

9

u

v
w w′

f

g′g

�Sh

g ◦ f min(h, g′ ◦ f)

Figure 2: Contraction of v: a shortcut (u,w, g◦g) is created, and the ATF of the edge (u,w′, h)
is updated to min(h, g′ ◦ f).

and edges going to a marked vertex. For each edge, the ATF is evaluated to know the arrival
time and its target vertex is inserted in the priority queue.

3.3 Time pro�le queries

For time pro�le queries, we want to answer an ATF that maps each departure time to the
corresponding earliest arrival time. In [Gei11, section 4.1.3] and [BGSV13, Algorithm 2] an
algorithm is proposed, which is an improved version of Bellman-Ford algorithm. It maintains
an ATF from the source to each vertex, initialised to t 7→ +∞ for all vertices but the source for
which it is initialised to t 7→ t. Then it works like Bellman-Ford but only edges whose source
has been updated are processed again, starting with the source. To do this the algorithm
maintains a priority queue of vertices to be examinated, where the key is the duration of
the shortest travel to this vertex (i.e. for an ATF f it is mint∈D(f(t) − t)). In other words,
the closest vertex throughout all possible departure times is processed: its neighbour are
(re)inserted in the priority queue after their ATFs have been updated.

As for earliest arrival queries in the time independent contraction hierarchies, for each
vertex v in V , we compute with this algorithm an ATF f↑v from the source in G↑ (forward

ATFs), and an ATF f↓v to the target in G↓ (backward ATFs). Then the answer is the time
pro�le

min
v∈V

(f↓v ◦ f↑v)

The correctness of the result follows from the correctness of the earliest arrival algorithm.
Indeed for each departure time t, let v be the maximum vertex in the shortest path. Then
f↓v ◦ f↑v (t) is exactly its arrival time, which appear in the �nal minimum. Moreover no better
time can be achieved.

3.4 Time pro�le queries using dynamic programming

The following is, up to our knowledge, a new idea.

3.4.1 Dynamic programming

We note that the graphs G↑ and G↓ are directed acyclic graph (DAG). Indeed each edge in
G↑ (resp. G↓) goes to a strictly larger (resp. smaller) vertices, with regard to the contraction
order. In DAGs, we can compute distances using dynamic programming. At the end each

10

vertex knows the distance to all its successors. The initialisation takes care of the leafs, and
once all successors of a vertex are done, we can compute the distance between this vertex and
all its successors, until the roots are processed.

Here, we can use this method to construct the ATF between any pair of nodes in G↑ or in
G↓. We also already know a topological order of these graphs: the one given by the order of
contraction. Thus starting with the last contracted vertex, we construct the ATF from each
and every vertex to all its successors.

This gives us an improvement of our time pro�le query: we can construct forward and
backward ATFs more e�ciently, the rest of the algorithm remaining the same.

3.4.2 Labelling scheme

This also gives us a natural labelling scheme. We de�ne the label of a vertex as the time
pro�les to all its successors in the DAG G↑ as well as in G↓. All the labels can be computed
using the dynamic programming process explained before. Then to answer a time pro�le
query, we use directly the forward ATFs in the label of the source and the backward ATFs in
the label of the target. This way, only the compositions between forward and backward ATFs
and the �nal minimum are needed.

3.5 Generalisation

This adaptation of contraction hierarchies has been studied using graphs labelled with ATFs,
which are a semiring whose multiplication is the composition and addition is the minimum.
It is generalisable to any semiring such that no cycles are negative, i.e. [BT10]

∀cycle c, w(c) + 1 = 1

where w(c) is the weight of the cycle c and 1 is the identity element for the multiplication.
Brie�y when the non-negativity of cycle holds, we can compute shortcuts with the operations
of the semiring, split a distance query onto increasing and decreasing graphs, and then patch
the results together which gives the correct result because no cycles are allowed in shortest
paths. Contraction hierarchies will work as soon as the graph has recursively small balanced
separators.

4 Walk or bus networks

In [BGSV13] continuous piecewise linear functions are used to model arrival time functions.
We propose to work only with a subset of piecewise linear functions which is especially adapted
to public transportation graphs because it �ts exactly the structure of ATFs in these graphs.
Moreover these functions may not be continuous.

4.1 De�nition

For the sake of simpli�cation, we �x the set of dates D = R∪{+∞}, but the construction can
be easily generalised to other dates, and in particular to �nite sets. We consider two types of
ATFs over these dates:

11

t

f(t)

(b)

(a) (c)

(d)

Figure 3: Example of an arrival time function f . t is the departure date, f(t) the arrival. A
dot (d, a) corresponds to a bus leaving at d and arriving at a (b). Right before we should wait
the bus and, consequently, arrive at the same date (a). Right after we miss the bus and have
to wait for the next one (c). Finally sometimes it may be faster to walk (d).

• The walk pro�les: letW = R+∪{+∞} be the set of durations. Given w ∈ W, we de�ne
the walk pro�le

Ww : t 7→ t+ w

These pro�les represent constant traversal time.

• The bus pro�les: let C = {(d, a), d ∈ D, a ≥ d} be the set of connections: a departure
date and a larger arrival date. Given C ⊂ C, we de�ne the bus pro�le

LC : t 7→ min{a | ∃(d, a) ∈ C, d ≥ t}, where min(∅) = +∞

which is a piecewise constant and increasing function on D. These pro�les can represent
buses, subways, ferries, . . . , connections.

We now de�ne T the closure of {Ww, w ∈ W} ∪ {LC , C ⊂ C} for composition and minimum,
which are the so-called walk or bus pro�les. An example is given �gure 3.

Proposition 1. (T ,min, ◦) is a semiring. Its zero is t 7→ +∞ (identity element for min),
and its one is t 7→ t (identity element for ◦).

Proposition 2. Every pro�le in T can be written as the minimum of a walking pro�le and a
bus pro�le

T = {t 7→ min(Ww(t), LC(t)), w ∈ W, C ⊂ C}

Proof. Because Ww = min(Ww, L∅) and LC = min(W+∞, LC), it su�ces to show that this set
is closed under composition and minimum.
Given
f(t) = min(Wwf

(t), LCf
(t))

g(t) = min(Wwg(t), LCg(t))

12

we have
min(f(t), g(t)) = min(Wwf

(t),Wwg(t), LCf
(t), LCg(t))

= min(Wmin(wf ,wg)(t), LCf∪Cg(t))
and
g ◦ f(t) = min(f(t) + wg, LCg(f(t))

= min(t+ wf + wg, LCf
(t) + wg, LCg(min(t+ wf , LCf

(t)))

= min(Wwf+wg︸ ︷︷ ︸
(a)

, LCf
(t) + wg︸ ︷︷ ︸
(b)

, LCg(t+ wf)︸ ︷︷ ︸
(c)

, LCg(LCf
(t))︸ ︷︷ ︸

(d)

) because LCg is increasing

= min(Wwf+wg , LC)
for some C because the minimum of three piecewise constant and increasing functions is a
piecewise constant and increasing function.

Remark 3. Two ways to traverse each edges give four ways to traverse two edges in a row:
walking and walking (cost (a)), taking a bus then walking (cost (b)), walking then taking a bus
(cost (c)), or taking two buses (cost (d)).

De�nition 4 (Size of an ATF). We de�ne the size of an ATF f ∈ T as the minimum number
of connections needed to express f :

size(f) = min{|C| | C ⊂ C, ∃w ∈ W, f = min(Ww, LC)}

Proposition 3. The size of the composition or the minimum of two ATFs is at most the sum
of their sizes

∀f, g ∈ T , size(min(f, g)) ≤ size(f) + size(g)

∀f, g ∈ T , size(f ◦ g)) ≤ size(f) + size(g)

Proof. The result is immediate for the minimum. For the composition, given an ATF f
and a set of connections C which expresses f (i.e. there exists a walking time w such that
f = min(Ww, LC)), since for one departure time only one arrival time is relevant, we can
upper bound the size of f by looking at the number of di�erent departure times there are
in C. Resuming the proof of proposition 2, C is the union of {(d, a + wg) | (d, a) ∈ Cf}
(from term (b)), {(d − wf , a) | (d, a) ∈ Cg} (from term (c)), and {(d, a′) | ∃(d, a) ∈ Cf , a

′ =
min{a′ | ∃(d′, a′) ∈ Cg, a ≤ d′}} (from term (d)). The departure times are {d | (d, a) ∈ Cf}
and {d− wf | (d, a) ∈ Cg}, hence the bound.

4.2 Implementation and algorithms

4.2.1 Data representation

Walking pro�les are represented either with an integer, the number of seconds needed to
traverse the edge, or +∞ if no walking is possible.

Bus pro�les are represented with an array of connections. Each connection is a pair of
integers: the departure and the arrival date, in seconds since a �xed date. Moreover, this
array is always sorted by increasing departure time, breaking ties by decreasing arrival time.

13

4.2.2 Dominated connections

The same ATF can be represented with more or less connections, all of them being not
necessary meaningful. We explain how to prune the dominated connections to get a minimal
set whose cardinal is the size of the ATF.

For example a bus that leaves at 8 a.m. and arrives at 11 a.m. is overtaken by a bus that
leaves at 9 and arrives at 10. Indeed the second one leaves after and arrives before the �rst
one, thus no shortest path that use the longer bus are not possible with the faster one. We
say that the useful connection dominates the other one.

Proposition 4. A dominated connection is meaningless in the bus pro�le. That is given a set
of connections C, if c = (d, a) ∈ C is dominated by c′ = (d′, a′) ∈ C i.e. d ≤ d′ and a ≥ a′,
then

LC\{c} = LC

Proof. Recall that given a set of connections C,

LC(t) = min{a | ∃(d, a) ∈ C, d ≥ t}

If t > d, then c is not considered in the minimum and LC(t) = LC\{c}(t).
If t ≤ d, then t ≤ d′ holds too. Both a and a′ are considered in the minimum, and since
a′ ≤ a, we have LC(t) = LC\{c}(t).

Likewise, a bus connection can be longer than a walk:

Proposition 5. A connection longer than the walking time is meaningless in the walk or bus
pro�le. That is given a set of connections C, a walking time w, and a connection c = (d, a) ∈
C, if a− d ≥ w then

min(Ww, LC\{c}) = min(Ww, LC)

Proof. If t > d then c is not considered. Otherwise t ≤ d and a ≥ d + w ≥ t + w = Ww(t).
Thus a will never be meaningful in the minimum.

Because dominated connections are meaningless, we keep only dominating ones in an ATF
during all the computations, while taking care to keep only one representative for duplicates.
Connections dominated by a walk are plainly �ltered out, and other dominated connections
are removed with algorithm 1.

Proposition 6. Algorithm 1 returns all non dominated connections of a sorted array of con-
nections, and the result is sorted in increasing order for both departure time and arrival time.
Its runtime is O(n): linear in the size of the input.

The algorithm processes each connection in increasing order. It maintains an array R of
non-dominated (so far) connections. Before inserting another connection at the end of R, it
checks if this connection dominates the last entry of R. If it is true, the last connection of R
is removed and the current connection is compared again to the last entry of R. This way,
all strictly dominated connections are removed, only one for duplicates is kept, and all other
connections are kept in R.

14

Data: A sorted array of connections C = [(d1, a1), . . . , (dn, an)]
Result: A sorted array of non-dominated connections R

1 R← empty array
2 i← 1 // connection currently treated

3 while i ≤ n do
4 if R is empty then
5 R.append(di, ai)
6 i← i+ 1

7 else

8 (d, a)← R.last()
9 if ai > a then
10 R.append(di, ai)
11 i← i+ 1

12 else // R.last() is dominated

13 R.pop_last()
14 end

15 end

16 end

17 return R
Algorithm 1: Filter dominated connections

Proof. Correctness: We note ci = (di, ai) for 1 ≤ i ≤ n. Suppose that ci is dominated by cj ,
with j minimum. Then dj ≥ di holds so we can suppose without loss of generality (in the
case ci = cj) that j > i. We claim that for all i ≤ k < j, ck is dominated by cj . Indeed
di ≤ dk ≤ dj holds and if ak ≤ aj then ck dominate ci which contradicts the minimality of j.
Thus ak > aj and ck is dominated by cj . This claim shows that a dominated connection is
removed as soon as the �rst connection that dominates it is processed.

Runtime: At each iteration, either a connection is appended to R, or the last connection
in R is discarded. Every connection can be appended only once, and can be discarded only
once. Thus the runtime is O(n).

In the following we call cut a routine that takes an ATF (a walking time and an array of
connections), and returns an array of connections of minimum size for the same ATF.

4.2.3 ATF evaluation

The ordering and the �ltering of dominated connections enable the evaluation of an ATF f
for a given t in time O(log(size(f))), by binary search.

4.2.4 Minimum

The composition of two bus pro�les uses the merge routine of the merge sort.

Proposition 7. Algorithm 2 returns an ATF of minimum size that corresponds to the min-
imum of the two given ATFs. Its runtime is O(n + n′) where n and n′ are the sizes of the
given ATFs.

15

Data: Two ATFs w,C = [(d1, a1), . . . , (dn, an)] and w
′, C ′ = [(d′1, a

′
1), . . . , (d

′
n′ , a′n′)]

Result: An ATF wo, Co

1 wo ← min(w,w′)
2 Co ← cut(merge(L, L′)), w0)
3 return wo, Co

Algorithm 2: Minimum of two ATFs

4.2.5 Composition

As we seen in the proof of proposition 3, the bus pro�le of a composition comes from three
sets of connections. The last one (taking two buses in a row) is computable e�ciently because
the inputs are sorted. Algorithm 3 computes the composition of two ATFs in linear time.

Proposition 8. Algorithm 3 returns an ATF of minimum size that corresponds to the com-
position of the two given ATFs. Its runtime is O(n + n′) where n and n′ are the sizes of the
given ATFs.

Here are some explanations for the connection and connection part: we have seen that all
possible changes are {(d, a′) | ∃(d, a) ∈ C, a′ = min{a′ | ∃(d′, a′) ∈ C ′, a ≤ d′}}. Hence for
all connection in C, as soon as the change is possible (line 10), a new connection is appended
to the result. However for (di, ai), (di+1, ai+1) ∈ C and (dj , aj) ∈ C ′ with ai+1 ≤ dj , the
connection (di, aj) will also be dominated by (di+1, aj) and is discarded (line 9). At the end,
line 15 allows to iterate over C ′ until a feasible change is found.

5 Experiments

5.1 Environment

The tests have been performed on a CentOs 5.1, linux 2.6.18, using one core of an Intel Xeon
E7420 64 bits, clocked at 2.13Ghz, with 132 GB of main memory and 8 MB of L2 cache. The
code has been compiled with ocamlopt 4.02.3, and uses opam packages ocamlgraph 1.8.6 and
csv 1.5.

5.2 Instances

Four instances were tested.

5.2.1 Instances with transportation network

Three instances come from a metropolis transit feed in the format GTFS [GTF]. The feeds
were downloaded the 10th August 2016, and truncated to this one day.

• RATP
http://data.ratp.fr/explore/dataset/offre-transport-de-la-ratp-format-gtfs/

• STIF
http://opendata.stif.info/explore/dataset/offre-horaires-tc-gtfs-idf/

• VBB
https://daten.berlin.de/datensaetze/vbb-fahrplandaten-ende-juni-bis-dezember-2016

16

http://data.ratp.fr/explore/dataset/offre-transport-de-la-ratp-format-gtfs/
http://opendata.stif.info/explore/dataset/offre-horaires-tc-gtfs-idf/
https://daten.berlin.de/datensaetze/vbb-fahrplandaten-ende-juni-bis-dezember-2016

Data: Two ATFs w,C = [(d1, a1), . . . , (dn, an)] and w
′, C ′ = [(d′1, a

′
1), . . . , (d

′
n′ , a′n′)]

Result: An ATF wo, Co

1 CC ← empty array
2 CW ← empty array
3 WC ← empty array
/* Walk and walk */

4 wo ← w + w′

/* Connection and connection */

5 i← 1 // current connection in L

6 j ← 1 // current connection in L'

7 while i ≤ n and j ≤ n′ do
8 if i+ 1 ≤ n and ai+1 ≤ d′j then
9 i← i+ 1 // skip (di, ai)
10 else if ai ≤ d′j then
11 CC.append(di, a

′
j) // new connection

12 i← i+ 1
13 j ← j + 1

14 else

15 j ← j + 1 // skip (d′j , a
′
j)

16 end

17 end

/* Connection and walk */

18 for i← 1 to n do
19 CW .append(di, ai + w′)
20 end

/* Walk and connection */

21 for j ← 1 to n′ do
22 WC.append(d′j − w, a′j)
23 end

24 Co ← cut(merge(CC, merge(CW , WC)), w0) // merge the three arrays and cut

25 return wo, Co

Algorithm 3: Composition of two ATFs

17

In this format each station is split in several stops which are di�erent physical bus or train
platforms, and are connected together with walking transfers. Transfers also occur between
stops of two near stations. Unlike in the station graph model (see Section 1.3), we do not take
into account this hierarchy: each vertex embodies one stop, and we directly model transfers
with walk pro�les, while transport connections are naturally modeled with bus pro�les.

5.2.2 Instance with roads and transportation networks

The fourth instance RATP+OSM is based on the feed from RATP, but roads are added. The
data comes from Geofabrik (https://www.geofabrik.de/), whose data comes from Open-
StreetMap. In this graph road segments are edges while junctions are vertices. It is prepro-
cessed and truncated to longitudes in the range [2, 2.8] and latitudes in [48.68, 49.06] (area
around Paris). This data is only geographical, so we derive the walking traversal time of
an edge from its length, assuming a walking speed of 6 kilometers per hour. Then all bus
stops are connected to the nearest vertex in the road network. These connections are only an
approximation of all possible changes, but they supply an easy way to link both graphs.

This double graph (transportation and roads) allows to �nd routes which mix walking and
transportation in any order and for any walking distance. To our knowledge, this is the �rst
speed up technique for computing such routes without any limitation on walking distance.

Because this graph is mainly composed of roads, it should be advantageous to apply
contraction hierarchies optimisation for road graphs, which we did not tried.

5.2.3 Notes

We have written our program in Ocaml, which has good enough performance but uses more
memory than low level languages. Thus there is scope for improvement with the memory
footprints reported here. The same is relevant for graph sizes: our format is far to be optimal.

The �rst part of the table 1 describes instances, the second part the preprocessing phase,
the third the contracted graphs (original graph with shortcuts added), the fourth describes
labels computation with dynamic programming (see Section 3.4), and the last one describes
performance on at least 100 random queries:

• EA Dijkstra is the classic Dijkstra's algorithm for earliest arrival time, on the input
graph;

• EA Dijkstra CH is the bidirectional Dijkstra's algorithm on the contracted graph (see
Section 3.2);

• TP Bellman-Ford is the classic Bellman-Ford for time pro�les on the input graph;

• TP Bellman-Ford CH is the bidirectional Bellman-Ford on the contracted graph (see
Section 3.3);

• TP DP CH is the same but use dynamic programming instead of Bellman-Ford (see
Section 3.4);

• TP labels is the same but with precomputed labels (see Section 3.4).

5.2.4 Results

Table 1 presents the results of our experiments.

18

https://www.geofabrik.de/

RATP STIF VBB RATP+OSM

Instance graph

#vertices 22483 35040 11945 555291

#edges 185904 205032 41673 1405682

mean degree in/out 8/8 5/5 3/3 2/2

max degree in/out 128/128 85/84 20/21 128/128

mean/max ATF size 7/574 10/615 29/1372 1/574

size (Mo) 17 24 12 42

Preprocessing

separator (s) 134 370 24 5143

contraction (s) 734 1897 17 113392

total (s) 868 2267 41 118535

memory usage (Go) 8.4 ? 0.36 ?

Contracted graph

#edges 1062487 814364 97680 4610377

mean degree in/out 47/47 23/23 8/8 34/34

max degree in/out 1029/1018 1001/929 219/219 1708/1792

mean/max ATF size 84/847 57/1008 40/1372 110/885

size (Mo) 791 423 37 6306

Labels

duration (s) 9709 152

memory usage (Go) 114 4.1

size (Go) 11 0.534

Queries min/mean/max (ms)

EA Dijkstra 0/140/853 0/304/25118 0/45/355 0/1011/7146

EA Dijkstra CH 28/302/663 34/179/315 2/14/41 19/1164/2472

TP Bellman-Ford 0/55028/281829 600/16725/262257 0/799/2896 0/101435/395141

TP Bellman-Ford CH 287/5405/24007 221/1259/7009 5/45/327 1275/11922/42847

TP DP CH 281/2690/10835 321/1044/4380 4/44/247 759/5338/19793

TP labels 0/3/13 0/0/4

Table 1: Results of our experiments

Instances ATFs have small size in RATP: this is because a lot of changes are given, between
two platforms of the same station of two near stations, and these changes have size 0 as they
have only a walking pro�le. The mean size of ATFs that have at least one connection is 61.

Contracted graph The contracted graph has between 2 and 5 times more edges than the
original graph, which is in some cases a little more than observed with road networks, for
which it doubles.

EA queries No signi�cant speed up has been measured on RATP and RATP+OSM. We
think that this is due to the high degrees in the contracted graph: even if exploration areas are
small in vertices, a lot of edges are traversed. On STIF and VBB, a speed up of 2 is measured
on average, but may be a lot more with some queries. This is disappointing comparing to the

19

speed up measured with road graphs, which is of four orders of magnitude [BDG+15].

TP queries A speed up of 10 is measured on all instances. It is even a little bit faster
with the trick of dynamic programming (especially on bad queries). Finally, TP queries
with precomputed labels are extremely faster, within a few milliseconds, at the cost of a
precomputing of a few hours. We recall that this result may be used to answer EA queries as
well (see remark 2).

RATP+OSM The running times for this instance are too high to be useful: the prepro-
cessing phase takes more than a day while queries last from 3 seconds for EA queries to a
minute for TP queries.

5.2.5 Comparison with other algorithms

We did not run other algorithms on the same machine and the same instances, but we recall
here some performances.

Station graph In [Gei09] some experiments are made with the graph VBB, but with data
from the winter 2000/01. To compare raw results, our preprocessing is faster (41 seconds
against 216), but our queries are slower: 15 vs 0.5ms for EA queries, and 44 vs 24ms for TP
queries (TP without precomputed labels). However we take the data accurately, when station
graph identi�es all inner transfers to the same duration.

RAPTOR We did not use the same instances than the authors of [DPW15]. On their
London instance, they perform EA queries in 7.3ms, and TP queries in 87ms. No preprocessing
is necessary with this method.

Transfer Patterns As for RAPTOR we did not test our algorithm on the instances pre-
sented in [BCE+10]. Even if their instances are larger, their preprocessing takes several
hundred of CPU hours, but the queries take less than 10ms to complete. We recall that the
results can be approximate if the shortest path includes 3 changes or more.

Conclusion

Our �rst results were promising, applying contraction hierarchies to transportation graphs
and getting a good speed up for time pro�le queries. Contraction hierarchies even worked on
a graph with a transportation network as long as roads of its whole area. We would like to
improve the preprocessing time on these kind of instances, which may be possible with usual
optimisations and distributed computing. About our labelling scheme, labels are too expensive
to be computed for the graph with road networks, thus we are investigating a trade-o� between
the number of precomputed labels and the query time with queries that mix partial Dijkstra's
algorithms and labels data.

Finally I would like to thank Laurent for working with me, for his good mood and his good
advice.

20

References

[AFGW10] Ittai Abraham, Amos Fiat, Andrew V. Goldberg, and Renato Fonseca F. Werneck.
Highway dimension, shortest paths, and provably e�cient algorithms. In Moses
Charikar, editor, Proceedings of the Twenty-First Annual ACM-SIAM Symposium
on Discrete Algorithms, SODA 2010, Austin, Texas, USA, January 17-19, 2010,
pages 782�793. SIAM, 2010.

[BCE+10] Hannah Bast, Erik Carlsson, Arno Eigenwillig, Robert Geisberger, Chris Harrel-
son, Veselin Raychev, and Fabien Viger. Fast routing in very large public trans-
portation networks using transfer patterns. In Mark de Berg and Ulrich Meyer,
editors, Algorithms - ESA 2010, 18th Annual European Symposium, Liverpool,
UK, September 6-8, 2010. Proceedings, Part I, volume 6346 of Lecture Notes in
Computer Science, pages 290�301. Springer, 2010.

[BDG+15] Hannah Bast, Daniel Delling, Andrew V. Goldberg, Matthias Müller-Hannemann,
Thomas Pajor, Peter Sanders, Dorothea Wagner, and Renato F. Werneck. Route
planning in transportation networks. CoRR, abs/1504.05140, 2015.

[BGSV13] Gernot Veit Batz, Robert Geisberger, Peter Sanders, and Christian Vetter. Mini-
mum time-dependent travel times with contraction hierarchies. ACM Journal of
Experimental Algorithmics, 18, 2013.

[BT10] John S. Baras and George Theodorakopoulos. Path Problems in Networks. Synthe-
sis Lectures on Communication Networks. Morgan & Claypool Publishers, 2010.

[DPW15] Daniel Delling, Thomas Pajor, and Renato F. Werneck. Round-based public
transit routing. Transportation Science, 49(3):591�604, 2015.

[Gei09] Robert Geisberger. Contraction of timetable networks with realistic transfers.
CoRR, abs/0908.1528, 2009.

[Gei11] Robert Geisberger. Advanced route planning in transportation networks. Diss.
Karlsruher Instituts fr Technologie, 2011.

[GSSD08] Robert Geisberger, Peter Sanders, Dominik Schultes, and Daniel Delling. Con-
traction hierarchies: Faster and simpler hierarchical routing in road networks. In
Catherine C. McGeoch, editor, Experimental Algorithms, 7th International Work-
shop, WEA 2008, Provincetown, MA, USA, May 30-June 1, 2008, Proceedings,
volume 5038 of Lecture Notes in Computer Science, pages 319�333. Springer, 2008.

[GTF] GTFS format description. https://developers.google.com/transit/. Ac-
cessed the 14th August 2016.

[Mil12] Nikola Milosavljevic. On optimal preprocessing for contraction hierarchies. In
Stephan Winter and Matthias Müller-Hannemann, editors, 5th ACM SIGSPA-
TIAL International Workshop on Computational Transportation Science 2011,
CTS'12, November 6, 2012, Redondo Beach, CA, USA, pages 33�38. ACM, 2012.

21

https://developers.google.com/transit/

[SS15] Aaron Schild and Christian Sommer. On balanced separators in road networks.
In Evripidis Bampis, editor, Experimental Algorithms - 14th International Sym-
posium, SEA 2015, Paris, France, June 29 - July 1, 2015, Proceedings, volume
9125 of Lecture Notes in Computer Science, pages 286�297. Springer, 2015.

[Wir15] Alexander Wirth. Algorithms for Contraction Hierarchies on Public Transit Net-
works. PhD thesis, Informatics Institute, 2015.

22

	State of the art
	Contraction hierarchies
	Preprocessing
	Order of contraction
	Shortest path queries

	Time dependant contraction hierarchies
	Station graph model for transportation network
	Small balanced separators of road networks
	Other methods
	Contributions

	Definitions and problem statement
	Definition
	Problem statement
	Working framework

	Contraction hierarchies with ATFs
	Preprocessing
	Order of contraction
	Contraction

	Earliest arrival queries
	Time profile queries
	Time profile queries using dynamic programming
	Dynamic programming
	Labelling scheme

	Generalisation

	Walk or bus networks
	Definition
	Implementation and algorithms
	Data representation
	Dominated connections
	ATF evaluation
	Minimum
	Composition

	Experiments
	Environment
	Instances
	Instances with transportation network
	Instance with roads and transportation networks
	Notes
	Results
	Comparison with other algorithms

